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I. TYPOSIN SECTIONS15.4AND 15.5
The version below correct some of the minor typos and usemplified notation (e.gF ;1 = Fj_1).

Il. THE AUGMENTED KALMAN FILTER ALGORITHM FORRNNS

Amongst recursive filters in the domain of second order sttasi, Kalman filters are optimal sequential state estinsdiar
nonstationary signals [112, 141]. They have also been usagveral modern applications including state estimatncér
navigation systems [193, 223], parameter estimation foe tseries modelling [245], and the training of neural neksdd 12,
139, 246]. To discuss Kalman filter based algorithms for tlaéning of complex valued RNNs, we shall first introduce an
augmented state space model and the corresponding updatie fKalman filter. Similarly to ACLMS and ACRTRL, these
updates have the same generic form as the standard updat=so Ehe augmentation all the vectors have two times the size
and matrices four times the size of the corresponding vecod matrices within the standard algorithm.

Consider a general state-space model, given by [112]
X = Fro1Xg—1+wp
Vi = Hixp+vg 1)

wherex;, are the states to be estimated andis the system output (usually one or a subset of the statesipblesw, and
vy, are independent, zero mean, complex valued Gaussian naisesges with covariance matric®s and R respectively,
andF andH are the transition and measurement matrices. The augmstattedspace model can be written as

Xp = Fr_iXig +wi
Yo = Hipxp+vi )
T T F, O Hy, T T
wherexj = [ngka} Y = [y{,ka] FL = L HE = LWk = [“"ngkH] andvy = [vaVkH]
0 F; 0 H;
The augmented equivalents Qf, andR;, are denoted respectively lfy; andRj.
To initialise the algorithm for the time instait= 0, set
Xo = E[Xg],
Po = E |(x§ — E[x§]) (x§ — £ [x5])" ©)
The updates within the Kalman filtering algorithms are giteow!
Sate estimate propagation:
227 = F%_lﬁi_l (4)
Error covariance propagation:
Py = Fi_1Pe1(Fi_)" +Q; ©)
Kalman gain matrix:
— a ap— a a -1
Gy, = Py (HY)™ [HiPL (H) + Ry] (6)

IFor clarity, we use notation similar to that from [112].



Sate estimate update:
X = %1+ G (i — Hi%i) (7)
Error covariance update:
Pr = (I — GeHE) Py ®)

This completes the description of the augmented complexedaKalman filter (ACKF).

A. EKF Based Training of Complex RNNs

To establish a mathematical framework for Kalman filter lbasaining of complex RNNs, consider a nonlinear state space
modef

WEo= Wi )

Ye = h(wg,uf)+vg 9)
whereh(-) is a nonlinear operator associated with observatiorfsjs an augmented weight vector of the netwod, is
the overall input vector to the network, agg is the augmented vector of observations. From the first e in (9), the
complex weights within RNN are modelled as random walk. Tdeaibehind the Extended Kalman Filter (EKF) is to linearise

the state space model (9) locally (for every time instanbased on a truncated Taylor series expansion ardufwd, 102].
Once such a local linear model is obtained, standard ACKRaigsd(4) — (8) can be applied.

The Augmented Complex Extended Kalman Filtering AlgoritGRCEKF) for the training of complex RNNs can now be
summarised as [95]
—1

Gr = Pp(HD" [HiPL(HD™ +RE]™

Wi o= Wi+ Gy [y —hwi T, up)]

Pr = (I =GkH}) P, +Q (10)
and is initialised by

Wy = E[wo]

Po = B|(ws— Ewg)) (ws— Bwg))"| (11)

The augmented Jacobfamatrix H} of the partial derivatives oh is computed using the augmented CRTRL algorithm for
recurrent networks [93](using fully-complex nonliness$). The Kalman gain matri$;, is a function of the estimated error
covariance matri¥;, the Jacobian matrikii; and a global scaling matrik (P, (H})” + R{.

[1l. AUGMENTED COMPLEX UNSCENTEDKALMAN FILTER (ACUKF)

Since the higher order terms within the Taylor series expanis the EKF model are often not negligible, the EKF is
prone to accumulating error over time (10). To help solve hiioblem, the unscented Kalman filter (UKF) [139, 301] has
been proposed, whereby nonlinear transforms are used pagate the signal statistics. This way, the informatiomfidgher
order moments of nhon—Gaussian processes is accountechtbtha approximations within the UKF scenario are accurate a
least up to second order statistical mom#&rjs89]. Within the CUKF, a series of so—called complex valsgima vectors,
that is, vectors selected to be representatives of the pildpalistribution, are used to calculate the crosscatieh between
the error in the estimated state and error in the estimatedreations, as well as the correlation matrix of the error.

Within the CUKF framework, the information about the distriions of complex random variables is propagated through
the system model (9) usin@f, + 1) weighted particles, wheré is the dimension of the state space of the system. The
weighting for every such particle is given by

(m) _ _A
0 L+ XN
@ _ A

4 1-=
Wy =1 a® + B,

A

(m) i) — 2~ =1,...,2L 12
Wn Wn 2(L+)\>7 n ) b) ( )

2EKF based algorithms have proven successful for the traiofngal valued temporal neural networks [181, 222].
3Matrix H{ is the matrix of partial derivatives of the augmented outgtitwith respect to the weights.
4The EKF is accurate only up to first order statistics due tofitts¢ order linearisation in the truncated Taylor seriesamgion.



where A = o?(L + k) — L is a scaling parameter is set to a small value (typically of ordag0—2) and is related to the
spread of the sample points around the meais usually set td), whereas parametet incorporates knowledge fromprior
distributions (in the case of complex valued Gaussianibdigions, the optimal value i = 2).

A. Sate Space Equations for the Complex Unscented Kalman Filter

The CUKEF effectively aims at evaluating the Jacobian matrithin CEKF through the so called sigma—point propagation,
hence not requiring any analytical calculation of the datise. The complex valued weight vector within the netwoakd
the error covariance matrix are initialised as

Wo = E[W], Py=E [(w ~ W) (W — wO)T] (13)
whereas the sigma—point calculation is given by [301]
S = (L+XN)(Px+Qy)
Wi = [ Wi /S — /S (14)
These sigma point estimates are then passed through a eemfimctionh, that is
Vi = h(W,xp) (15)

and their mean is computed as

2L
Vi = > WiV

n=0
(16)
to yield the measurement-update equations for the CUKFanfdahm
2L
c H
P = 2 Wi (k= yi) P —y)") +Ru
n=0
2L
Pawr = Z Wy <(Wn,k — W) (Vnke — yk)H) (17)
n=0
Finally, the filter update recursions for the complex unsegrKalman filter are given by
Ki = PuyiPyk
Wiy = Wi+ Kiég
Pit1 = Pr—KgPy Ky (18)

where the estimation erra;, = d;, —y,,, andd; is the desired output vector.

The conceptual differences between CUKF and complex vaikde [95] are relatively minor but result in significant thetical
and practical advantages. For instance, the use of signiarggd4) to improve the estimation of the statistical prtips of
the signal in hand facilitates the processing of non—Gausgiocesses, typically found in real world applications.

B. ACUKF Based Training of Complex RNNs
Consider the augmented state space model
W= Wi, +wh
Yi = hwg,xg) +vi (19)

with the augmented complex variables as in the ACKF. The aunged covariance matrices of zero mean complex valued
Gaussian noise processesand v are denoted respectively i, and R{. After the state augmentation, based on (12) the

5The ACUKF training is derived for a general case of RNNs. Thgoithms can be straightforwardly simplified to IIR and FIReik, by removing
nonlinearity or feedback.



(4L + 1) weighted particles for the augmented complex valued meancavariance estimation become

(m) _ A
0 2L+ N’
() _ 2
Wol =g Flmat b
A
(m) _yple) = AL
W =W = ey e b

where\ = o?(2L + k) — 2L is a scaling parameter.

The following expressions summarise the augmented CUKRh®rtraining of complex valued RNNs

W = Bwg)

a a ~a a ~a\T
Pb = E [(WO — W) (Wg — W) }
Sy = 2L+ N(P;+Qy)

Wi = LW /ST - /ST

whereby, based on (18) and (19), the recursive updatesniBUKF are given by
Vi = h(Wgxg)

AL

Vio= > WiV
"L i

i = 2 WE (Vs —vi) @ —v0)") + R
n=0

4L
e = >oWe (Wa ) (8- vi)")
n=0

" -1
Ki = Puyr{Pyit
Wiy = Wy +Kie
P%+1 = PZ - szgy,k{Kz}H
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