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I. TYPOS IN SECTIONS15.4AND 15.5

The version below correct some of the minor typos and uses a simplified notation (e.g.Fk,k−1 = Fk−1).

II. T HE AUGMENTED KALMAN FILTER ALGORITHM FOR RNNS

Amongst recursive filters in the domain of second order statistics, Kalman filters are optimal sequential state estimators for
nonstationary signals [112, 141]. They have also been used in several modern applications including state estimation for car
navigation systems [193, 223], parameter estimation for time series modelling [245], and the training of neural networks [112,
139, 246]. To discuss Kalman filter based algorithms for the training of complex valued RNNs, we shall first introduce an
augmented state space model and the corresponding updates for the Kalman filter. Similarly to ACLMS and ACRTRL, these
updates have the same generic form as the standard updates. Due to the augmentation all the vectors have two times the size
and matrices four times the size of the corresponding vectors and matrices within the standard algorithm.

Consider a general state-space model, given by [112]

xk = Fk−1xk−1 + ωk

yk = Hkxk + νk (1)

wherexk are the states to be estimated andyk is the system output (usually one or a subset of the states). Variablesωk and
vk are independent, zero mean, complex valued Gaussian noise processes with covariance matricesQk and Rk respectively,
andF andH are the transition and measurement matrices. The augmentedstate space model can be written as

xak = Fa
k−1xak−1 + ω

a
k

yak = Ha
kxak + ν

a
k (2)

wherexak =
[

xTk , x
H
k

]T
, yak =

[

yTk , y
H
k

]T
, Fa

k =

[

Fk 0

0 F∗

k

]

, Ha
k =

[

Hk 0

0 H∗

k

]

, ωa
k =

[

ω
T
k ,ω

H
k

]T
and ν

a
k =

[

ν
T
k ,ν

H
k

]T
.

The augmented equivalents ofQk andRk are denoted respectively byQa
k andRa

k.

To initialise the algorithm for the time instantk = 0, set

x̂a0 = E [xa0 ] ,

P0 = E
[

(xa0 − E [xa0 ]) (x
a
0 − E [xa0 ])

h
]

(3)

The updates within the Kalman filtering algorithms are givenbelow1

State estimate propagation:

x̂a−k = Fa
k−1x̂ak−1 (4)

Error covariance propagation:

P−

k = Fa
k−1Pk−1(Fa

k−1)
H + Qa

k (5)

Kalman gain matrix:

Gk = P−

k (H
a
k)

H
[

Ha
kP−

k (H
a
k)

H + Ra
k

]

−1
(6)

1For clarity, we use notation similar to that from [112].
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State estimate update:

x̂ak = x̂a−k + Gk

(

yak − Ha
kx̂a−k

)

(7)

Error covariance update:

Pk = (I − GkHa
k)P−

k (8)

This completes the description of the augmented complex valued Kalman filter (ACKF).

A. EKF Based Training of Complex RNNs

To establish a mathematical framework for Kalman filter based training of complex RNNs, consider a nonlinear state space
model2

wa
k = wa

k−1 + ω
a
k

yak = h(wa
k,u

a
k) + ν

a
k (9)

whereh(·) is a nonlinear operator associated with observations,wa
k is an augmented weight vector of the network,ua

k is
the overall input vector to the network, andyak is the augmented vector of observations. From the first expression in (9), the
complex weights within RNN are modelled as random walk. The idea behind the Extended Kalman Filter (EKF) is to linearise
the state space model (9) locally (for every time instantk) based on a truncated Taylor series expansion aroundh [70, 102].
Once such a local linear model is obtained, standard ACKF updates (4) – (8) can be applied.

The Augmented Complex Extended Kalman Filtering Algorithm(ACEKF) for the training of complex RNNs can now be
summarised as [95]

Gk = P−

k (H
a
k)

H
[

Ha
kP−

k (H
a
k)

H + Ra
k

]

−1

ŵa
k = ŵa−

k + Gk

[

yak − h(ŵa−
k ,ua

k)
]

Pk = (I − GkHa
k)P−

k + Qa
k (10)

and is initialised by

ŵa
0 = E [w0]

P0 = E
[

(wa
0 − E [wa

0 ]) (w
a
0 − E [wa

0 ])
H
]

(11)

The augmented Jacobian3 matrix Ha
k of the partial derivatives ofh is computed using the augmented CRTRL algorithm for

recurrent networks [93](using fully-complex nonlinearities). The Kalman gain matrixGk is a function of the estimated error
covariance matrixPk, the Jacobian matrixHa

k and a global scaling matrixHa
kP−

k (H
a
k)

H + Ra
k.

III. A UGMENTED COMPLEX UNSCENTEDKALMAN FILTER (ACUKF)

Since the higher order terms within the Taylor series expansion in the EKF model are often not negligible, the EKF is
prone to accumulating error over time (10). To help solve this problem, the unscented Kalman filter (UKF) [139, 301] has
been proposed, whereby nonlinear transforms are used to propagate the signal statistics. This way, the information from higher
order moments of non–Gaussian processes is accounted for, and the approximations within the UKF scenario are accurate at
least up to second order statistical moments4 [139]. Within the CUKF, a series of so–called complex valuedsigma vectors,
that is, vectors selected to be representatives of the probability distribution, are used to calculate the crosscorrelation between
the error in the estimated state and error in the estimated observations, as well as the correlation matrix of the error.

Within the CUKF framework, the information about the distributions of complex random variables is propagated through
the system model (9) using (2L + 1) weighted particles, whereL is the dimension of the state space of the system. The
weighting for every such particle is given by

W
(m)
0 =

λ

L+ λ
,

W
(c)
0 =

λ

L+ λ
+ 1− α2 + β,

W(m)
n = W(c)

n =
λ

2(L+ λ)
, n = 1, . . . , 2L (12)

2EKF based algorithms have proven successful for the trainingof real valued temporal neural networks [181, 222].
3Matrix Ha

k
is the matrix of partial derivatives of the augmented outputya

k
with respect to the weights.

4The EKF is accurate only up to first order statistics due to thefirst order linearisation in the truncated Taylor series expansion.
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whereλ = α2(L + κ) − L is a scaling parameter,α is set to a small value (typically of order10−3) and is related to the
spread of the sample points around the mean,κ is usually set to0, whereas parameterβ incorporates knowledge fromprior
distributions (in the case of complex valued Gaussian distributions, the optimal value isβ = 2).

A. State Space Equations for the Complex Unscented Kalman Filter

The CUKF effectively aims at evaluating the Jacobian matrixwithin CEKF through the so called sigma–point propagation,
hence not requiring any analytical calculation of the derivative. The complex valued weight vector within the network5 and
the error covariance matrix are initialised as

ŵ0 = E[w], P0 = E
[

(w − ŵ0) (w − ŵ0)
T
]

(13)

whereas the sigma–point calculation is given by [301]

Sk = (L+ λ)(Pk + Qk)

Wk =
[

ŵk, ŵk +
√

Sk, ŵk −
√

Sk

]

(14)

These sigma point estimates are then passed through a nonlinear functionh, that is

Yk = h (Wk, xk) (15)

and their mean is computed as

yk =

2L
∑

n=0

Wm
n Yn,k

(16)

to yield the measurement-update equations for the CUKF in the form

Pyy,k =
2L
∑

n=0

Wc
n

(

(Yn,k − yk) (Yn,k − yk)
H
)

+ Rk

Pwy,k =

2L
∑

n=0

Wc
n

(

(Wn,k − ŵk) (Yn,k − yk)
H
)

(17)

Finally, the filter update recursions for the complex unscented Kalman filter are given by

Kk = Pwy,kP−1
yy,k

ŵk+1 = ŵk + Kkek
Pk+1 = Pk − KkPyy,kKH

k (18)

where the estimation errorek = dk − yk, anddk is the desired output vector.

The conceptual differences between CUKF and complex valuedEKF [95] are relatively minor but result in significant theoretical
and practical advantages. For instance, the use of sigma vectors (14) to improve the estimation of the statistical properties of
the signal in hand facilitates the processing of non–Gaussian processes, typically found in real world applications.

B. ACUKF Based Training of Complex RNNs

Consider the augmented state space model

wa
k = wa

k−1 + ω
a
k

yak = h(wa
k, x

a
k) + ν

a
k (19)

with the augmented complex variables as in the ACKF. The augmented covariance matrices of zero mean complex valued
Gaussian noise processesω andν are denoted respectively byQa

k and Ra
k. After the state augmentation, based on (12) the

5The ACUKF training is derived for a general case of RNNs. The algorithms can be straightforwardly simplified to IIR and FIR filters, by removing
nonlinearity or feedback.
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(4L+ 1) weighted particles for the augmented complex valued mean and covariance estimation become

W
(m)
0 =

λ

2L+ λ
,

W
(c)
0 =

λ

2L+ λ
+ 1− α2 + β,

W(m)
n = W(c)

n =
λ

2(2L+ λ)
, n = 1, . . . , 4L

whereλ = α2(2L+ κ)− 2L is a scaling parameter.

The following expressions summarise the augmented CUKF forthe training of complex valued RNNs

ŵa
0 = E[wa

0 ]

Pa
0 = E

[

(wa
0 − ŵa

0) (w
a
0 − ŵa

0)
T
]

S
a
k = (2L+ λ)(Pa

k + Qa
k)

W
a
k =

[

ŵa
k, ŵ

a
k +

√

S
a
k, ŵ

a
k −

√

S
a
k

]

(20)

whereby, based on (18) and (19), the recursive updates within ACUKF are given by

Ya

k
= h (Wa

k, x
a
k)

yak =
4L
∑

n=0

Wm
n Y

a
n,k

Pa
yy,k =

4L
∑

n=0

Wc
n

(

(

Y
a
n,k − yak

) (

Y
a
n,k − yak

)H
)

+ Ra
k

Pa
wy,k =

4L
∑

n=0

Wc
n

(

(

W
a
n,k − ŵa

k

) (

Y
a
n,k − yak

)H
)

Ka
k = Pa

wy,k{Pa
yy,k}

−1

ŵa
k+1 = ŵa

k + Ka
keak

Pa
k+1 = Pa

k − Ka
kPa

yy,k{Ka
k}

H (21)
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